quinta-feira, 21 de abril de 2011

PARA TODOS 1 E 2 ELEMENTO QUIMICO

Elemento químico
Maria da Conceição Marinho Oki
Originalmente publicado em Química Nova na Escola, n. 16, novembro 2002
Apoio: Sociedade Brasileira de Química
Edição: Leila Cardoso Teruya
Coordenação: Guilherme Andrade Marson
Uma das maneiras de utilizar a história da Ciência para melhorar o ensino consiste em realizar uma análise histórica da gênese do conhecimento científico e da sua construção.

Entre as possíveis estratégias para alcançar esses objetivos, tem-se a identificação dos chamados “conceitos estruturantes” das ciências e uma análise da sua evolução histórica. Segundo Gagliardi (1988), “os conceitos estruturantes são aqueles que permitiram e impulsionaram a transformação de uma ciência, a elaboração de novas teorias, a utilização de novos métodos e novos instrumentos conceituais”.

O conceito de elemento químico é um dos mais importantes da Química, podendo ser considerado, de acordo com a proposta de Glagiardi, como um conceito estruturante que, ao lado de tantos outros, como átomo, molécula, substância, reação química, ligação química etc., foram fundamentais para o desenvolvimento dessa ciência.

Através do uso da história e epistemologia da Química, podemos conhecer a gênese desse conceito, as várias concepções que se sucederam nos seus diferentes contextos e as modificações ocorridas ao longo do tempo relacionadas a fatores socioculturais. Um estudo usando o referencial histórico- epistemológico também revelará relações importantes com outros conceitos, que certamente serão importantes para o ensino de Química. Atualmente, o conceito de elemento químico é introduzido, de um modo geral, nos primeiros capítulos dos livros de Química. Alguns dos conceitos que são apresentados podem ser vistos a seguir: “Um elemento é uma substância simples, fundamental e elementar. Um elemento não pode ser separado ou decomposto em substâncias mais simples” (Russel, 1994); “Os elementos são substâncias que não podem ser decompostas em outras mais simples... Cada elemento é constituído por apenas uma espécie de átomo” (Brown et al., 1999).

Os trechos anteriormente citados foram extraídos de livros adotados no Brasil e traduzidos dos originais na língua inglesa dos referidos autores. Nota-se que o conceito de elemento remete ao conceito de substância, mais especificamente ao de substância simples. A simbiose entre os dois conceitos gera confusão, que poderia ser evitada se os tradutores esclarecessem aos leitores o duplo sentido associado ao emprego dessa palavra na língua inglesa.

Em artigo publicado na revista Química Nova sobre o ensino de conceitos em Química, Tunes et al. (1989) discutem os equívocos existentes no emprego da expressão “elemento químico” em nosso país, o que é ocasionado pelo maior uso no nível superior de livros traduzidos da língua inglesa, nos quais o vocábulo utilizado “element” inclui tanto o conceito de substância simples quanto o de elemento.

Para Tunes et al. (1989), o elemento químico constitui uma classe de átomos formada pelos diferentes nuclídeos ou “tipo de átomo caracterizado por um número atômico específico”. Nesse artigo define-se nuclídeo como “tipo de um dado elemento químico caracterizado por um número de massa específico”.

Elementos: os princípios constituintes
A origem do nome elemento encontra- se relacionada ao vocábulo grego “stocheion”, correspondente ao termo latino “elementum”, que reúne três letras consecutivas do centro do alfabeto latino: L, M e N (Lockemann, 1960). Aristóteles usou a palavra “stocheion”, que significava para ele tanto elemento quanto princípio. Essa palavra foi posteriormente adotada nas várias línguas européias.

Elementos, princípios e átomos acompanhar-nos-ão em toda a história da Química, mas não assinalam uma unidade, uma continuidade conceitual à qual a história da Química esteja submetida (Bensaude-Vincent e Stengers, 1992).

O uso desses termos nos diferentes contextos denota as divergências existentes nas explicações das qualidades da matéria manifestadas na sua aparência e nas suas transformações sustentadas em diferentes bases interpretativas.

O conceito de elemento começou a se estruturar a partir da necessidade de explicação das mudanças observadas na natureza; os filósofos présocráticos foram os primeiros a tentar justificar o que aparentemente mudava e o que permanecia sem alteração, estando esse conceito vinculado às especulações desses filósofos sobre os princípios constituintes da matéria, ou seja, a sua causa primária, a sua essência.

Tales de Mileto (624-544 a.C.) considerou a água o único e primordial princípio responsável pela multiplicidade dos seres. Anaximandro (610-546 a. C.), discípulo de Tales, foi o primeiro a usar o termo “arché”, que significa princípio; no entanto, discordava de Tales em relação à explicação da existência de um único princípio, o que considerava uma limitação. Segundo ele, o princípio de tudo seria o “apeíron”, uma substância primária, indeterminada e imaterial.

Empédocles (490-430 a.C.) usou em suas explicações a idéia de quatro princípios ou elementos primordiais: terra, água, ar e fogo. O amor e o ódio eram as forças antagônicas que promoviam a união ou dissociação dos quatro elementos e explicavam as mudanças observadas no mundo. Esse filósofo não utilizou em seus textos a palavra elemento, substituindo-a por raízes, mas mantendo o mesmo significado. “O termo elemento parece ter sido utilizado pela primeira vez por Platão” (Maar, 1999).

Os quatro “elementos-princípios” de Empédocles foram adotados pelo importante filósofo grego Aristóteles (384-322 a.C.), que lhes atribuiu qualidades. Um estudo das obras de Aristóteles revela que a sua visão sofreu algumas modificações ao longo do tempo (Mierzecki, 1991). No seu trabalho “Física”, no qual examina conceitos gerais relativos ao mundo físico, Aristóteles declarou a existência de somente três elementos; na sua obra “Sobre a geração e a corrupção”, considerou a existência de quatro elementos e, em “Sobre o céu”, onde apresenta estudos sobre o mundo sideral e sublunar, acrescentou o quinto elemento: o éter, a matéria constituinte dos corpos celestes. Posteriormente, esse último elemento foi chamado de quinta essência, caracterizando-se como o princípio formador de todos os corpos existentes no mundo supralunar, ou seja, a parte do Universo que se inicia com a Lua (Chassot, 1995).

Aristóteles considerava que tudo era formado por uma matéria de base ou substrato “hylé”; a este se juntavam as qualidades responsáveis pela sua aparência e forma. Essas qualidades elementares eram: quente, seco, frio e úmido. Todas as substâncias existentes seriam formadas pelos quatro elementos e cada elemento era caracterizado por um par de qualidades.

O conceito de “elemento-princípio” oriundo da filosofia grega revela uma ciência baseada nas qualidades aparentes dos corpos e que são percebidas pelos sentidos e o importante papel conferido à observação e à contemplação. Essa é uma ciência que concebe a realidade natural como um mundo hierarquizado com lugares prédeterminados para todas as coisas.

A concepção de que a mudança na proporção quantitativa dos elementos constituintes podia levar à mudança nas propriedades e aparência dos corpos foi a base teórica para a crença na transmutação de metais menos nobres naquele cuja combinação de qualidades seria a mais perfeita possível: o ouro. Essas tentativas foram empreendidas por alquimistas árabes e europeus durante o período medieval usando-se vários procedimentos e operações.

Nesse período, os quatro elementos de Empédocles e, posteriormente, de Aristóteles, eram considerados como existentes em todas as substâncias; os metais, por exemplo, não eram considerados como corpos simples.

Atribui-se a Jabir ibn Hayyan, um alquimista árabe sobre o qual não se tem certeza sobre as suas origens, mas que teria vivido entre os séculos VIII e IX, a introdução da teoria do “enxofremercúrio”, baseada numa concepção dualista. Segundo essa teoria, todos os corpos seriam formados em diferentes proporções por dois princípios: o enxofre, portador da propriedade combustibilidade, e o princípio mercúrio, carregador da metalicidade.

A transmutação seria possível pela modificação da composição natural dos corpos. O ouro era o metal que encerrava uma composição ideal dos constituintes enxofre e mercúrio e uma maior pureza.

Esses “elementos-princípios” introduzidos no período da Alquimia ficaram conhecidos como espagíricos e a eles foi adicionado por Paracelso (1493-1541), no século XVI, o elemento sal, causador da solubilidade dos corpos e cuja presença estava relacionada à estabilidade.

Devemos considerar que, no contexto em que foram propostos, os elementos enxofre e mercúrio eram princípios abstratos, numa concepção metafísica de elemento, não devendo ser confundidos com as substâncias reais que desde aquela época e até hoje têm o mesmo nome.

Elementos: os limites extremos da análise química
Uma definição de elemento que já é considerada por alguns historiadores como moderna foi formulada por um dos mais importantes químicos do século XVII, o inglês Robert Boyle (1627- 1691). Segundo Partington (1961), Boyle apresentou uma definição que discordava das concepções de elementos como princípios. Maar (1999) considera que a proposta de Boyle foi realmente moderna, só deixando de servir à Química com a descoberta dos isótopos a partir do início do século XX. No entanto, existem algumas divergências quanto a essa abordagem.

Alfonso-Goldfarb (1987) considera que Boyle apresentou uma definição aparentemente moderna de elemento, uma vez que, ao final, questionava a sua validade. A sua principal contribuição foi a destruição do conceito existente, abrindo caminho para uma nova elaboração. Para outros historiadores, Boyle não substituiu a definição tradicional por outra moderna, mas questionou a função de elemento na prática do químico, expressando as suas dúvidas quanto ao fato de que cada elemento estaria ou não presente na constituição de todos os corpos (Bensaude- Vincent e Stengers, 1992).

O conceito de elemento de Boyle, bem como suas dúvidas, aparecem explicitadas na sua importante obra “O químico cético” (1661), como pode ser observado no trecho a seguir, extraído do apêndice desse livro:

Chamo agora elementos certos corpos primitivos e simples, perfeitamente puros de qualquer mistura, que não são constituídos por nenhum outro corpo, ou uns pelos outros, que são os ingredientes a partir dos quais todos os corpos que chamamos misturas perfeitas são compostos de modo imediato, e nos quais estes últimos podem ser finalmente resolvidos. E o que me pergunto agora é se existe um corpo deste tipo que se encontre de modo constante em todos, e em cada um, daqueles que se dizem constituídos por elementos (Bensaude-Vincent e Stengers, 1992).

Esse conceito difere em sua essência das concepções aristotélicas e espagíricas, que dominaram a Química até o período medieval, e passa a fundamentar o principal programa da Qímica no século XVIII: a análise dos corpos.

Para Boyle, os elementos eram os constituintes que resultavam da análise química, ou seja, “os verdadeiros limites extremos da análise química” (Mason, 1964). Boyle, no entanto, não cita em suas obras exemplos de elementos existentes na natureza.

Embora nesse trabalho outros assuntos tenham sido discutidos, como o problema da combustão, uma das principais questões colocadas era o número de elementos existentes e a influência da composição dos corpos nas propriedades.

Boyle criticou o raciocínio usado pelos alquimistas e propôs que todos os corpos químicos fossem produzidos por diferentes texturas, resultantes da combinação de diferentes partículas; as propriedades dos “corpos mistos” ou substâncias compostas deveria resultar também de sua estrutura e não somente de sua composição. Tal concepção revela a influência das idéias pertencentes ao atomismo mecanicista, muito influente na Química no século XVII.

O novo conceito de elemento “boyliano” influenciou a Química nos séculos seguintes, embora as concepções antigas tenham resistido até o século XVIII.

Lavoisier (1743-1794) usou meios empíricos para contestar os conceitos antigos, herdados de Aristóteles e dos alquimistas. Ele adotou o conceito introduzido por Boyle, dando-lhe uma existência concreta e precisa e definindo-o claramente no trecho a seguir, extraído do seu importante livro “Tratado Elementar de Química” (1789):

Se [...] associarmos ao nome de elementos ou de princípios dos corpos a idéia do último termo ao qual chega a análise, todas as substâncias que não podemos decompor por meio algum são para nós elementos: não que possamos assegurar que estes corpos, que nós consideramos como simples, não sejam eles mesmos compostos de dois ou mesmo de um maior número de princípios, mas como estes princípios jamais se separam, ou antes, como não temos nenhum meio de os separar, eles comportam- se para nós como os corpos simples, e não devemos supô- los compostos senão no momento em que a experiência e a observação nos tenham fornecido a prova(Bensaude-Vincent e Stengers, 1992).

A proposta de Lavoisier e colaboradores (Louis Bernard Guyton de Morveau, Claude Louis Berthollet e Antoine François de Fourcroy) de introduzir uma nova nomenclatura para as substâncias químicas teve como princípio geral que o nome da substância refletisse a sua composição; para tanto, a nova definição de elemento foi essencial.

Uma análise da tabela de substâncias simples proposta por Lavoisier no seu “Tratado Elementar de Química” demonstra que ele já reconhecia os metais como substâncias simples, embora alguns dos elementos considerados fossem, na verdade, substâncias compostas. Dos trinta e três elementos citados, cinco deles são hoje reconhecidos como óxidos, três são radicais que ainda não haviam sido identificados e dois correspondem à luz e ao calórico.

Apesar dos méritos do importante trabalho de Lavoisier e dos avanços introduzidos na Química Teórica, alguns equívocos foram cometidos por ele, como a inclusão do calórico e da luz como elementos imponderáveis. As concepções apresentadas sobre o calórico, assim como sobre o “princípio oxigênio”, trazem ainda embutidos resíduos de uma Química qualitativa. Em seu livro, Lavoisier ainda se referia aos elementos químicos usando diferentes nomenclaturas, como: princípio, elemento, substância simples e corpo simples (Tolentino et al., 1997).

Corpos simples, substâncias simples ou elementos?
A concepção de elemento como sinônimo de corpo simples foi também explicitada em um livro-texto do mais influente químico da primeira metade do século XIX, Jons Jacob Berzelius (1779-1848), “Manual de Química” (1825), como pode ser visto a seguir:

Corpos que ocorrem na Terra são divididos em simples, não decompostos e compostos:

(1) Corpos simples são aqueles que podemos acreditar com certeza que eles não são compostos e que ocorrem como constituintes do restante da natureza.

(2) Corpos não decompostos (“indecomposed“) são aqueles que nós podemos supor que não são simples, mas eles não foram decompostos em elementos mais simples; se estes corpos são compostos não se conhece os seus constituintes absolutamente.

(3) Corpos compostos são aqueles que podem ser decompostos por meios químicos em outros mais simples (Mierzecki, 1991).

Observa-se que nesse período confundia-se o conceito de elemento com o de corpo simples; uma outra questão a ser observada é que os vocábulos corpo e substância eram usados indistintamente, não se fazendo diferenciação entre ambos.

A confusão conceitual envolvendo os termos elemento e substância simples ainda hoje é observada em alguns livros de Química, como visto anteriormente. No entanto, ainda no século XIX, Mendeleiev já registrava esse fato, propondo uma diferenciação entre elemento e corpo simples no seu importante artigo científico “A lei periódica dos elementos químicos” (1871).

Tal como Laurent e Gerhardt empregaram as palavras molécula, átomo e equivalente indistintamente, também hoje em dia se confundem freqüentemente as expressões corpos simples e elemento. Contudo, cada uma delas tem um significado bem distinto, que importa precisar para evitar confusões nos termos da filosofia química. Um corpo simples é qualquer coisa de material, metal ou metalóide, dotada de propriedades físicas e químicas. A expressão corpo simples corresponde à idéia de molécula[...]. Pelo contrário, deve-se reservar o nome de elemento para caracterizar as partículas materiais que formam os corpos simples e compostos e que determinam o modo como se comportam do ponto de vista físico e químico. A palavra elemento corresponde à idéia de átomo (Bensaude-Vincent e Stengers, 1992).

O conceito de elemento passou a ser vinculado ao conceito de átomo; essa relação está claramente explicitada por Mendeleiev nesse trecho de sua autoria e o peso atômico passou a se impor como critério de classificação.

Critérios modernos para uma conceituação de elemento químico
Embora os conceitos de elemento e átomo tenham sido introduzidos pelos gregos, não coube a eles a associação desses conceitos; este foi um mérito da Química moderna e do processo interativo teoria e prática, idéias e técnicas que permanentemente se modificam e se influenciam mutuamente.

Os avanços na Química Teórica do século XIX e a sua aproximação da Física permitiram que outros critérios passassem a ser utilizados para se distinguir um elemento químico, tais como a valência e o peso atômico (atualmente massa atômica relativa). Tais critérios foram fundamentais para a identificação de grande número de elementos químicos e possibilitaram a organização dos mesmos em diversos sistemas de classificação e o relacionamento das propriedades dos elementos com os seus pesos atômicos.

As primeiras determinações de pesos atômicos foram realizadas por John Dalton (1766-1844) e os resultados obtidos para essas grandezas foram responsáveis pela aceitação da Química como uma ciência exata.

A primeira metade do século XIX caracterizou-se por disputas inclusive no plano ideológico envolvendo a comunidade química. Os químicos comprometidos com o positivismo não aceitavam os pesos atômicos e preferiam fazer uso dos pesos equivalentes, obtidos exclusivamente a partir das relações de combinações ponderais ou volumétricas. Um outro grupo acreditava que o peso atômico era a característica fundamental de um elemento, definindo as suas propriedades.

O fim dessa disputa teve início com a importante contribuição do químico italiano Stanislao Canizzaro (1826-1910), que teve distribuído ao fim do importante Congresso de Karlsruhe (1860) um artigo científico de sua autoria, “Sunto di um Corso di Filosofia Chimica“, no qual deixava clara a diferença entre os conceitos de átomo e molécula, baseando- se na hipótese que havia sido formulada em 1811 por seu conterrâneo Amedeo Avogadro (1776-1856).

Após a superação das divergências, estabeleceram-se definitivamente os conceitos de átomo e molécula, equivalente, atomicidade e valência e as bases da Teoria Atômico-Molecular.

Nesse período, os valores determinados para os pesos atômicos nem sempre eram concordantes, o que se atribuía à imprecisão dos métodos experimentais e aos diferentes referenciais que eram usados como base para os cálculos. A variação nos valores determinados foi durante um certo período um problema inexplicável e não podia ser resolvido apenas com um maior rigor nas medições efetuadas. Foi necessária uma nova maneira de interpretação dos dados experimentais pautada numa mudança conceitual, que colocava em cheque o segundo postulado de Dalton e passava a admitir a idéia de que átomos de um mesmo elemento pudessem ter pesos diferentes. Essa idéia passou a orientar pesquisas que pudessem fornecer evidências da existência dos isótopos.

O termo isótopo foi criado em 1913 por Frederick Soddy (1877-1956) e incorporado à linguagem científica nas primeiras décadas do século XX. A construção do conceito de isótopo demonstra a necessidade do diálogo da razão com a experiência, pré-requisito hoje necessário para o processo de construção racional do conhecimento químico, que é mediado pela técnica.

Cabe destacar nesse episódio a contribuição de Francis William Aston (1877-1945) que, visualizando o princípio do espectrômetro de massa e fazendo uso desse instrumento, estabeleceu evidências de que o conceito de isótopo aplicava-se a todos os elementos e não apenas aos radioativos.

O conceito de elemento passou a ser definido com base na estrutura atômica e molecular, acessível por métodos físicos baseados principalmente em interações radiação-matéria. A significação dos fenômenos elétricos dos átomos é dada pelo aparelho; cabe ao espectrômetro de massa essa função quando separa, seleciona e registra a massa dos diferentes isótopos. A estreita relação entre a teoria e o instrumento é uma das características da Química moderna; o processo de aplicação experimental é que confere o valor de uma teoria, o instrumento científico é uma teoria materializada (Bachelard, 1977).

No século XX, a Química Teórica passou a se utilizar cada vez mais de conhecimentos produzidos no âmbito da Mecânica Quântica e da Física de Partículas. Os conhecimentos físicos sobre a estrutura do átomo penetraram na Química e introduziram mudanças radicais em conceitos básicos, apoiadas em um mundo submicroscópico em que muitas das leis naturais não se aplicam.

A identificação de um elemento químico passou a ser feita pelo seu número atômico e a sua caracterização considera a configuração eletrônica e os elétrons responsáveis pelas interações químicas que chamamos de elétrons de valência. Os conceitos de isótopo e de nuclídeo tornaram-se fundamentais para a elaboração de um novo conceito de elemento químico. A identidade do elemento químico foi modificada, já que esse passou a reagrupar um certo número de isótopos distintos.

O elemento químico deixou de ser o fim último da análise química, posição que passou a ser ocupada pelas partículas subatômicas. Novas propriedades, hoje consideradas como “elementares”, foram propostas visando sistematizar o grande número de partículas subatômicas descobertas. A identificação dessas partículas em número crescente tem sido possível graças aos avanços tecnológicos, a exemplo do desenvolvimento de potentes aceleradores de partículas. No mundo subnuclear, isto é, nesse campo da Física Atômica, considera-se como elementar “qualquer coisa da qual não se veja a estrutura” (Caruso e Oguri, 1997).

A evolução do conceito de elemento químico nos fornece um bom exemplo “da natureza multidisciplinar da Química onde se contrapõe a atividade manual com a intelectual, o microscópico com o macroscópico, o pragmatismo empírico com a especulação teórica” (Chagas, 1989).

É importante não nos esquecermos da provisoriedade dos conceitos, decorrente das modificações da Ciência resultantes dos avanços científicos; queremos registrar a dificuldade inerente à formulação desse conceito, que estabelece uma importante relação entre o que é macroscopicamente observado e o que se imagina microscopicamente, ou seja, requer que façamos uso da nossa importante capacidade de abstração.

  • Referências
    1. ALFONSO-GOLDFARB, A.M. Da alquimia à química. São Paulo: Nova Stella, Edusp, 1987. p.189.
    2. BACHELARD, G. O racionalismo aplicado. Trad. N.C. Caixeiro. Rio de Janeiro: Zahar Editores, 1977. p. 122-124.
    3. BENSAUDE-VINCENT, B.B. e STENGERS, I. História da Química. Trad. xxx. Lisboa: Editora Piaget, 1992. p. 23, 53-54, 128-129, 198-199.
    4. BROWN, T.L.; LE MAY Jr., H.E. e BURSTEN, B.E. Química - ciência central. Trad. H. Macedo. Rio de Janeiro: Livros Técnicos e Científicos, 1999. p. 4.
    5. CARUSO, F. e OGURI, V. A eterna busca do indivisível: do átomo filosófico aos quarks e léptons. Química Nova, v. 20, p. 324, 1997.
    6. CHAGAS, A.P. Como se faz química. Campinas: Editora da Unicamp, 1989. p. 89.
    7. CHASSOT, A. A ciência através dos tempos. São Paulo: Editora Moderna, 1995. p. 43.
    8. GAGLIARDI, R. Como utilizar la historia de las ciencias em la enseñanza de las ciencias.Enseñanza de las Ciencias, v. 6, n. 3, p. 291-296, 1988.
    9. LOCKEMANN, I. Historia de la Química. Trad. M.T. Toral. México: U.T.E.H.A., 1960. v. 1, p. 21.
    10. MAAR, J.H. Pequena história da Química. Primeira parte: dos primórdios a Lavoisier. Florianópolis: Papa Livros, 1999. p. 32, 345.
    11. MASON, S. História da ciência. Trad. F.J.V. de Lacerda. Editora Globo, Porto Alegre, 1964. p. 367.
    12. MIERZECKI, R. The historical development of chemical concepts. Varsóvia e Dordrecht: Polish Scientific Publishers e Kluwer Academic Publishers, 1991. p. 35, 46, 90.
    13. PARTINGTON, J.R. A history of chemistry. London: MacMillan and Company, 1961. v. 2, p. 501-502.
    14. RUSSEL, J.B. Química Geral. 2a ed. Trad. M. Guekezian et al. São Paulo: Makron Books, 1994. v. 1, p. 10.
    15. TOLENTINO, M.; ROCHA-FILHO, R.C. e CHAGAS, A.P. Alguns aspectos históricos da classificação periódica dos elementos químicos. Química Nova, v. 20, n. 1, p. 103, 1997.
    16. TUNES, E.; TOLENTINO, M.; SILVA, R.R. DA; SOUZA, E.C.P. DE e ROCHAFILHO, R.C. Ensino de conceitos em Química. IV - Sobre a estrutura elementar da matéria. Química Nova, v. 12, p. 199, 1989.

segunda-feira, 4 de abril de 2011

EXERCICIO PARA OS 2ABCDE

EXERCÍCIO DE SOLUÇÕES
01.  O gás oxigênio pode estar dissolvido na água na concentração de 0,05 g/L, em condição ambiente. Determine a massa de oxigênio existente em um aquário com volume de 100 L de capacidade;
02.  Em 200 mL de determinado leite em pó integral há, após dissolvido em água, 240 mg de cálcio. Calcule a concentração em g/L de cálcio desse leite.
03.  Um anestésico muito  utilizado em medicina e odontologia é a xilocaína. Esse anestésico é comercializado na forma líquida (solução) e no rótulo da embalagem está escrito "xilocaína a 2%". Com base nessa informação, calcule a massa de xilocaina presente em 200 g da solução.
04. (Puccamp-SP) Tem-se um frasco de soro glicosado a 5% (solução aquosa de 5,0% em massa de glicose). Para preparar 1,0 kg desse soro, quantos gramas de glicose devem ser dissolvidos em água?
a) 5,0 x 102                d) 50
b) 0,50                  e) 5,0 x 102
c) 5,0
05. Um creme dental apresenta na sua composição íons Fluoreto (F-) e a Quantidade desses íons, que vem escritano rótulo, é de 1 000 ppm. Sabendo-se que a massa de um tubo desse creme dental é de 90 g, calcule a massa de íons fluoreto existente nessa amostra.
06. O mercúrio é um metal altamente tóxico para o ser humano. A dosagem da quantidade desse metal no corpo humano pode ser determinada pela análise de fios de cabelo. Segundo a Organização Mundial de Saúde (OMS) o nível máximo aceitável é de 50 ppm, isto é, 0,00005 g de mercúrio por grama de cabelo. Calcule a massa de mercúrio existente em 250 g de cabelo.
07. O vinagre comercializado é uma mistura de água e ácido acético. No rótulo aparece como informação "ácido acético a 4%". Com base nesse dado, calcule a massa de ácido acético existente em 250 g dessa mistura.
08. soro fisiológico é uma solução de água e cloreto de sódio (NaCI) a 0,9%. Supondo que a massa de cada litro de soro isiológico seja de 1 000 g, calcule a massa de cloreto de sódio administrada a um paciente que recebeu 3 L de soro durante um período de internação.
09. (FEI-SP) As massas de H2C2O4 e H2O que devem ser  misturadas para preparar 1 000 g de solução a 5% de H2C2O4 são, respectivamente:
a) 60 g e 940 g         d) 108 g e 892 g
b) 90 g e 910 g         e) 70 g e 930 g
c) 50 g e 950 g
10. (Fuvest-SP) A análise de uma carga de batatas indicou a presença média de 1,0 x 10-5   mol de mercúrio por amostra de 25 g examinada. A legislação proíbe a comercialização ou doação de alimentos com teores de mercúrio acima de 0,50 ppm (mg/kg). Determine se essa carga deve ser confiscada. Dado: massa molar do mercúrio: 200 g/mol. Fale conosco
11. (PUC-SP) No rótulo de uma garrafa de "água mineral" lê-se, entre outras coisas: Conteúdo 1,5 L Bicarbonato de cálcio = 20 ppm Com base nesses dados, determine a massa de bicarbonato de cálcio no Conteúdo da garrafa. Dado: ppm = mg de soluto/litro de solução aquosa.
a) 0,03 g.     d) 0,06 g. b) 0,02 g.   e) 150 mg.
c) 0,01 g.
12.  O O ácido sulfúrico (H2SO4) é um poderoso agente desidratante, de grande uso na indústria. Calcule a concentração comum em g/L de uma solução de ácido sulfúrico com título de 0,78 e densidade de 1,7 g/mL
13. Com base nos dados da questão anterior, calcule a concentração em mol/L  (M) do ácido sulfúrico, sabendo que a Concentração comum (C) é 1 326 g/L.
Dado: massa molar do 1-12804 = 98 g/mol.
14. (Fuvest-SP) A molaridade de uma solução de ácido sufúrico de concentração 40% em massa e densidade 1,4 é, aproximadamente: Massas atômicas: H = 1,0; O = 16; S = 32.
a) 5,7    d) 28
b) 11    e) 42
c) 14
15. (Fuvest-SP) Uma dada solução aquosa de hidróxido de sódio contém 24% em massa de NaOH. Sendo a densidade da solução 1,25 g/mL, sua concentração, em g/L, será aproximadamente igual a:
a) 300                 d) 80
b) 240                 e) 19
c) 125
16. (Unitau-SP) Para matar baratas, precisamos fazer uma solução aquosa a 30% de ácido bórico (d = 1,30 g/mL), com concentração em mol/L de: (Dados: H: 1; B: 10,8; O: 16; fórmula do ácido bórico: HsBOs.)
a) 6,5 mol/L   d) 5,0 mol/L
b) 6,0 mol/L   e) 4,5 mol/L

domingo, 3 de abril de 2011

1 ABCDEFG AULA 1

 Unidades de Medidas
Em Química, para realizar qualquer experimento, além dos conceitos básicos de matéria e energia, também é necessário conhecer algumas unidades de medida. A medida de uma grandeza é um número que expressa uma quantidade comparada com um padrão previamente estabelecido.
• Massa
Massa (m) é a quantidade de matéria que existe em um corpo 7
A determinação da massa de .um corpo é feita pela comparação de sua massa, inicialmente desconhecida, com outra massa previamente conhecida, uma massa padrão. Para essa determinação, usa-se um aparelho chamado balança.
Relações mássicas:
1 kg = 1.000 g= 106 mg           1 g = 1.000 mg = 0,001 kg     1 ton = 1.000 kg = 106 g
• Volume
Ocupar lugar no espaço é uma característica da matéria associada à grandeza denominada volume. Em outras palavras, o volume de uma porção de matéria expressa o quanto de espaço é ocupado por ela. O volume de um corpo é determinado multiplicando-se seu comprimento por sua altura e por sua largura.
V = comprimento . altura . Largura
 Unidades de volume importantes são o decímetro cúbico (dm3 ), o litro (L), o centímetro cúbico (cm3), o mililitro (mL) e o metro cúbico (m3 ). No sistema internacional (SI) a unidade-padrão de volume é o metro cúbico (m3). No entanto, a unidade mais usada na Química é o litro (L).
Relações volumétricas
1 dm3 = 1 L                 1 L = 1.000 mL                   1 cm3 = 1 mL                                                                 1 m3 = 1.000 L           1 dm3 = 1 L = 1.000 cm3 = 1.000 mL               1 m3  = 1.000 dm3 = 1.000 L           1 m3 = 106cm3 ou mL          

 Estados físicos da matéria
Toda matéria é constituída de pequenas  partículas e, dependendo do maior ou menor grau de agregação entre elas, pode ser encontrada, para fins didáticos, em três estados físicos (pois,na verdade, existem cinco estados físicos da matéria): sólido, líquido e gasoso. As pedras, o gelo e a madeira são exemplos de matéria no estado sólido. A água, o leite, a gasolina e o mel estão no estado líquido. Já o gás hidrogênio, o gás oxigênio e o gás carbônico estão no estado gasoso.  Cada um dos três estados de agregação apresenta características próprias - como o volume, a densidade e a forma - que podem ser alteradas pela variação de temperatura (aquecimento ou resfriamento) e pressão. Quando uma substância muda de estado, sofre alterações nas suas características macroscópicas (volume, forma, etc.) e microscópicas (arranjo das partículas), não havendo, contudo, alteração em sua composição. Algumas propriedades desses estados estão relacionadas a seguir.

sólido Líquido Gasoso
Densidade (g/cm3)
Madeira balsa 0,12
Madeira ébano 1,20
Corpo humano (pulmões cheios) 0,95
Água 1,00
Cera de abelha 0,96
Mercúrio 13,60
Mudanças de estado físico da matéria
 Ponto de Fusão e Ponto de Ebulição
   O ponto de fusão é uma temperatura característica na qual determinada substância sofre fusão (durante o aquecimento) ou solidificação (durante o resfriamento), ou seja, trata-se da temperatura característica quando uma determinada substância passa do estado sólido para o estado líquido, ou do estado líquido para o estado sólido.
   O ponto de ebulição é uma temperatura característica na qual determinada substância sofre ebulição (durante o aquecimento) ou condensação (durante o resfriamento), ou seja, trata-se da temperatura característica quando uma determinada substância passa do estado líquido para o estado gasoso, ou do estado gasoso para o estado líquido.
Exercícios:
1. Bolinhas de naftalina são utilizadas no combate às traças. Por que essas bolinhas diminuemde tamanho com o passar do tempo?
2. Qual o nome da mudança de estado quando um sólido passa para o estado líquido?
3. Qual o nome da mudança de estado quando um líquido passa para o estado gasoso?
4. Qual o nome da mudança de estado quando um sólido passa para o estado gasoso?
5. Qual o nome da mudança de estado quando um gás passa para o estado líquido?
6. Qual o nome da mudança de estado quando um líquido passa para o estado sólido?
7. Quando uma substância passa do estado líquido para o estado gasoso, recebe o nome devaporização. Esta vaporização pode ser, dependendo das condições em que ocorre, de dois tipos: evaporação ou ebulição. Qual a diferença entre elas?
8. Qual a fase de agregação (estado físico) do oxigênio à temperatura de 25 °C, sabendo que o ponto de fusão do mesmo é -218,4 °C e que o ponto de ebulição é -183 °C?
9.
10.   Assinale a alternativa correta. Quando você sai de uma piscina e se expõe ao sol, sua pele fica seca depois de algum tempo. É correto dizer que a água:
a) Vaporizou?
b) Evaporou?
c) Entrou em ebulição?
d) Ferveu?
11. Uma churrasqueira é feita de ferro. Sabendo que o ponto de fusão do ferro é 1.538°C, o que você pode afirmar sobre a temperatura do carvão em brasa que está na churrasqueira, durante o preparo do churrasco? Explique.
12. (Fuvest-SP) Dada a tabela abaixo:
                                                Ponto de Fusão (°C)                     Ponto de Ebulição (°C)
Oxigênio                                             - 218,4                                      - 183,0
Fenol                                                   43,0                                                182,0
Pentano                                             -130,0                                            36,1
Qual o estado físico dessas substâncias à temperatura ambiente (25°C)?
 13. O ponto de fusão do ouro é 1.064°C e o rubi é 2.054°C. Após um incêndio, foram encontrados os restos de um anel feito de ouro e rubi. O ouro estava todo deformado, pois derreteu durante o incêndio, mas o rubi mantinha seu formato original. O que se pode afirmar sobre a temperatura das chamas durante o incêndio? Justifique sua resposta. 
14. Em relação aos processos de mudança de estado físico de uma substância, cite dois processos que são endotérmicos, isto é, que absorvem energia. Justifique a sua resposta através da ordenação das partículas.
15. Observe a tabela que apresenta as temperaturas de fusão e ebulição de algumas substâncias:
Substância           Ponto de fusão (ºC)                        Ponto de ebulição (ºC)
I                                              -117,3                                                    78,5
II                                            -93,9                                                       65,0
III                                           801                                                          1413
IV                                           3550                                                      4827
V                                            -95                                                          110,6
Indique qual o estado físico de cada substância na temperatura ambiente (25ºC).
I. ______________________
II. ______________________
III. ______________________
IV. ______________________
V. ______________________
16. Em relação aos processos de mudança de estado físico de uma substância, cite dois processos que são exotérmicos, isto é, que liberam energia. Justifique a sua resposta atravésda ordenação das partículas.
17. (Mackenzie-SP) Assinale a alternativa correta.
Substância          Ponto de Fusão (°C)                     Ponto de Ebulição (°C)
Etanol                                  -117                                                      78
Éter etílico                          -116                                                      34
Pela análise dos dados da tabela acima, medidos a 1 atm, podemos afirmar que, à temperatura de 40°C e 1 atm:
a) O éter e o etanol encontram-se na fase gasosa
b) O éter encontra-se na fase gasosa e o etanol na fase líquida
c) Ambos encontram-se na fase líquida
d) O éter encontra-se na fase líquida e o etanol na fase gasosa
e) Ambos encontram-se na fase sólida
                                
18. Assinale a alternativa correta. Para identificar três líquidos - de densidades 0,8; 1,0 e 1,2 – o analista dispõe de uma pequena bola de densidade 1,0. Conforme a posição das bolas apresentadas no desenho abaixo, podemos afirmar que:
a) Os líquidos contidos nas provetas 1, 2 e 3 apresentam densidades 0,8; 1,0 e 1,2.
b) Os líquidos contidos nas provetas 1, 2 e 3 apresentam densidades 1,2; 0,8 e 1,0.
c) Os líquidos contidos nas provetas 1, 2 e 3 apresentam densidades 1,0; 0,8 e 1,2.
d) Os líquidos contidos nas provetas 1, 2 e 3 apresentam densidades 1,2; 1,0 e 0,8.
e) Os líquidos contidos nas provetas 1, 2 e 3 apresentam densidades 1,0; 1,2 e 0,8.
19. (UFSM-RS) Com relação aos processos de mudança de estado físico de uma substância, pode-se afirmar que são endotérmicos, isto é, absorvem energia:
a) Vaporização, solidificação, liqüefação
b) Liqüefação, fusão, vaporização
c) Solidificação, fusão, sublimação
d) Solidificação, liqüefação, sublimação
e) Sublimação, fusão, vaporização
20. (PUC-MG) Numa praia, em pleno verão, um estudante de química observou que o carrinho de picolé usava “gelo seco” para retardar o degelo dos picolés. Pediu à vendedora um pedaço do gelo e colocou-o num copo com água, ocorrendo a formação de “fumaças brancas”. Observou-se então o fenômeno de:
a) Evaporação.
  Sublimação.
  Fusão.
  Gaseificação.
  Liqüefação
21. Considere os pontos de fusão e ebulição das seguintes substâncias
Substância                                        Ponto de Fusão (°C)                      Ponto de Ebulição (°C)
Benzeno                                                            5,5                                                         80,1
Acetona                                                             -94,6                                                     56,5
Tetracloreto de Carbono                             -22,6                                                     76,8
De acordo com esses dados, responda o que se pede:
a) Qual o estado físico do benzeno a uma temperatura de 90°C?
b) A acetona é sólida a uma temperatura de -10°C?
c) Qual o estado de agregação das partículas do tetracloreto de carbono a uma temperatura de 70°C?
d) A uma temperatura de 0°C, quais substâncias são sólidas?
e) A uma temperatura de 50°C, quais substâncias são líquidas?
     Corpo
Corpo é uma palavra que se origina do Latim corpu. Um corpo é uma porção limitada de matéria. Por exemplo, o substantivo Ouro designa a matéria Ouro, enquanto que uma barra de Ouro designa  uma porção limitada de Ouro, um corpo.
Sistema
Do Latim systema  e do Grego sýstema, reunião, grupo. É qualquer porção limitada do espaço físico contendo ou não matéria e que seja objeto de estudo. É um sinônimo de combinação de partes coordenadas entre si e que concorrem para um resultado ou para formarem um conjunto.
 Meio ambiente
Excluindo-se o sistema em estudo, é todo o restante do Universo.
 Moléculas
Do Latim molecula, é o diminutivo da palavra Latina mole, que significa de grande massa. Sob o ponto de vista químico, uma molécula é a mais pequena partícula de um elemento ou de um
composto químico que possa existir no estado livre e que ainda possui todas as propriedades desse elemento ou composto. Por exemplo, a molécula da água é formada por dois átomos de Hidrogênio e um átomo de Oxigênio. Se esta molécula for dividida não será mais água e sim Hidrogênio gasoso e Oxigênio gasoso.
Tipos de transformações
Ao analisar as transformações que a matéria pode sofrer, nota-se, basicamente, dois tipos de transformação. Num dos tipos, a transformação é feita e desfeita com relativa facilidade e a matéria mantém sua composição original, como dobrar e desdobrar uma folha de papel. O outro tipo de transformação ocorre quando esta mesma folha de papel pega fogo. Nota-se que o papel é basicamente convertido em energia, fumaça e cinzas, e que, nesta transformação, o papel não voltará mais a ser papel.
As transformações de materiais, energia ou de ambos recebem o nome de fenômeno. Os fenômenos podem ser divididos em Fenômenos Químicos e Fenômenos Físicos. 
• Fenômenos Químicos: são aqueles que causam alterações na estrutura da matéria, que envolvem reações Químicas. Por exemplo, queimar uma nota de um Dólar Americano é um fenômeno químico.
• Fenômenos Físicos: são aqueles que não causam alterações na estrutura da matéria, não envolvem reações químicas. Por exemplo, se você apenas rasgar ou dobrar uma folha de papel, você esta proporcionando um fenômeno físico.
Exercícios:
1. (UFSC) Fenômeno químico é aquele que altera a natureza da matéria, isto é, aquele no qual ocorre uma reação química. Baseado nessa informação, analise as proposições abaixo e indique (F) para fenômeno físico e (Q) para fenômeno químico.
(    ) A combustão de álcool ou gasolina nos motores dos automóveis.
(    ) A precipitação de chuvas.  
(    ) A queima do gás de cozinha.
(    ) A formação de gelo dentro de um refrigerador.
(    ) A formação de ferrugem sobre uma peça de ferro deixada ao relento.
(    ) A respiração animal.
2. (UFMG) A alternativa que NÃO envolve reação química é:
a) Caramelização do açúcar.  b) Combustão da lenha.
c) Dissolução em água de um comprimido efervescente.
d) Explosão da dinamite.  e) Precipitação da chuva
3. (Cesgranrio) Dentre as transformações abaixo, assinale a alternativa que apresenta um
fenômeno químico.
a) Obtenção de amônia a partir de hidrogênio e nitrogênio.
b) Obtenção do gelo a partir de água pura.
c) Obtenção de oxigênio líquido a partir do ar atmosférico.
d) Solidificação da parafina.
e) Sublimação da naftalina.
4. (UFRGS) Entre as transformações citadas a seguir, aquela que não representa um fenômeno
químico é:
a) cozimento de um ovo.
  b) queima do carvão
   c) amadurecimento de uma fruta.
d) azedamento do leite.
   e) formação de orvalho.
5. Classifique os fenômenos abaixo em químicos ou físicos
a) Rasgar papel________________________________
b) Queimar papel_______________________________
c) A luz das lâmpadas____________________________
d) A formação de ferrugem________________________
e) Cozinhar um ovo______________________________
f) Enrolar um fio de cobre_________________________
g) O apodrecimento das frutas______________________
h) A transformação do leite em iogurte_______________
i) O arco-íris____________________________________
j) A atração de um prego por um imã_________________
6. Ao ser colocada no congelador, a água da torneira sofre solidificação. Trata-se de um
fenômeno físico ou químico? Justifique.
7. Discuta se os fenômenos abaixo são físicos ou químicos:
a) O ato de mastigar um alimento
b) A digestão do alimento no estômago